Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)
نویسندگان
چکیده
Condition monitoring of induction motors is a fast emerging technology in the field of electrical equipment maintenance and has attracted more and more attention worldwide as the number of unexpected failure of a critical system can be avoided. Keeping this in mind a bearing fault detection scheme of three-phase inductionmotor has been attempted. In the present study, Support VectorMachine (SVM) is used alongwith continuouswavelet transform (CWT), an advanced signal-processing tool, to analyze the frame vibrations during start-up. CWT has not been widely applied in the field of condition monitoring eywords: ondition monitoring nduction motor earing fault ontinuous wavelet transform (CWT) althoughmuch better results can been obtained compared to thewidely usedDWTbased techniques. The encouraging results obtained from the present analysis is hoped to set up a base for condition monitoring technique of induction motor which will be simple, fast and overcome the limitations of traditional data-based models/techniques. © 2011 Elsevier B.V. All rights reserved. upport Vector Machine (SVM)
منابع مشابه
Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملWavelet support vector machine for induction machine fault diagnosis based on transient current signal
This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using kernel function is widely used for multi-class classification procedure. In this paper, building ke...
متن کاملWavelet based Fault Classification for Rolling Element Bearing in Induction Machine
Induction motors plays the most important role in any industry. Induction motor faults results in motor failure causing breakdown and great loss of production due to shutdown of industry and also increases the running cost of machine with reduction in efficiency. This needs for early detection of fault with diagnosis of its root cause. In this research paper a wavelet based fault classification...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011